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Introduction

TBD

1 Tensors

Tensors and tensor calculus are the main tool used in Differential Geometry and General Relativity.
It is essential to understand how they work and how to use them.

1.1 Cartesian Tensors

Tensors fields are an extension of the idea of functions (i.e scalars), vector fields and a matrices with
smooth function coefficients. They come with a rank.

Example: Temperature in a room. A function on an open subset of Rn is a rank 0 tensor field
(field means that its value depends on the point in the open set). It is commonly called a scalar.

Example: Velocity field in a fluid. A vector field on an open subset of Rn is a rank 1 tensor field
(field means that its value depends on the point in the open set).

NOTE: A vector field V can be seen as a linear function from V(w) defined as follows:

V(w) : w ∈ Rn → R; V(w) := V ·w (1)

where the dot represents the scalar product. It is easy to see that the above function is linear. This
is an important point which is always good to keep in mind. Vectors are always linear functions
from RntoR. This is a property they have in common with directional derivatives. We will use this
later on.
Example: Stress Tensor field . Stress is force per unit area. However to fully define stress in a
linear elastic material we need a bit more data then a force in a point. This is because we have
normal and tangent forces to any surface in the material and passing through any point.

Figure 1: Internal Force in a Material

Consider a point P in the material and a flat element of surface ∆S(n), which orientation is
given by its normal unit vector n. The total internal contact force ∆F(n) on the surface (i.e. the
force experienced by the material between the two faces of the surface) increases with the area of the
surface and depends in amplitude and direction by n. We define the following vector field depending
on n:

T(n) = lim
|∆S(n)|→0

∆F(n)

|∆S(n)|
(2)

which is called Cauchy Traction Field and it has units of pressure. By using a reasoning which is not
important to us and that is based on the equilibrium in the material (i.e. the internal of the material

is still), it is possible to show that the relation between T(n) and n is a linear transformation which
is:

T(n) =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 ·
nxny
nz

 = T · n (3)
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where T is called the Cauchy Stress Tensor.

NOTE: The Cauchy Traction Field T(n) is a vector and therefore, T(n)(m), with m ∈ R3 a unit
vector, is a linear map defined as:

T(n)(m) : m ∈ R3 → R; T(n)(m) := T(n) ·m (4)

and T can therefore be seen as a bilinear map T : Rn × Rn → R (in this case a quadratic form):

T(n; m) : (n; m) ∈ R3 × R3 → R; T(n,m) := T(n) ·m = nᵀTm (5)

If n and m are unit vectors then T(n; m) represents the projection along m of the Cauchy Stress
Tensor and it has unit of pressure. However, in the above bilinear form we can use vectors of any
amplitude.

Given the three examples above, the reader may have already guessed where we are getting at.
We are not in a position for giving a proper definition of tensors yet because the tensors described
in this section, called Cartesian tensors, are not the most general class of tensors. However, a tensor
T of rank ν defined on an open subset A ∈ Rn, is a multilinear map (i.e. linear in each of its ν
entries) that at list for this class of tensors is of the form:

T : Rn × · · · × Rn → R (6)

and it has nν components each of which is a smooth functions on A.

1.2 Covariant and Controvariant Tensors

So far we have introduced tensors on subset of Rn (i.e. an euclidean space) with components on
constant canonical orthonormal basis. These tensors are called Cartesian Tensors. That is nice,
however, if you want to do differential geometry and gravitation they are pretty much useless. The
real power of tensors come into play when we deal with coordinates transformations. We will see
that in this case, vectors can transform in two possible different ways. We show this with a simple
example. Let us consider the good old differential of metavariable calculus for a function f(x1;x2):

df(x) = ∇f(x) · dx; dx = (dx1, dx2) (7)

the above differential, if we fix dx, is a scalar function of space (rank 0 tensor) and it is the scalar
product of two vectors (rank 1 tensors). We apply now a generic coordinates transformation (i.e.
we go to curvilinear coordinates) as follows:{

x1 = x1(y1, y2)
x2 = x2(y1, y2)

(8)

and in a neighbourhood of a point P where the above are invertible:{
y1 = y1(x1, x2)
y2 = y2(x1, x2)

(9)

and we want to evaluate:
df(y) = ∇f(y) · dy (10)

Applying the chain rule to ∇f(x) and using (8) we find easily:

∇f(y) =

(
∂f

∂x1

∂x1

∂y1
+

∂f

∂x1

∂x1

∂y2
,
∂f

∂x2

∂x2

∂y1
+

∂f

∂x2

∂x2

∂y2

)
(11)

and differentiating the (9) we have:

dy =

(
∂y1

∂x1
dx1 +

∂y1

∂x2
dx2 ,

∂y2

∂x1
dx1 +

∂y2

∂x2
dx2

)
(12)
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clearly ∇f(y) and dy are both rank 1 tensors (i.e. vectors) but the transform in a completely
different way. To better understand the difference we may use, as an example, a simple coordinate
transformation such as a scaling, which is x1 = ay1 and x2 = ay2. Substituting in the (11) and (12)
we get:

∇f(y) = a∇f(x); dy =
1

a
dx (13)

while the scalar df = ∇f(y) · dy remains invariant under the coordinate transformations.

• We will call all tensor transforming like (11) covariant vectors (or simply vectors).

• We will call all tensor transforming like (12) controvariant vectors (or covectors).

To sum up we have learned a few things some of which not explicitly said yet. Under coordinate
transformations:

• Scalars are invariant. This is the reason why we defined tensors as multilinear maps with ν
inputs of the form T : Rn×· · ·×Rn → R. This maps are scalars and therefore invariant under
coordinate transformations.

• Vectors can transform as covariant and controvariant vectors. In tensor calculus, we need to
handle efficiently the way covariant and controvariant vector transform and this will be done
using, for each point of the space where the tensor is defined, two separate set of bases for the
two type of vectors.

• We need a different notation for covariant and controvariant tensors. This will be addressed
later.

• If you think about it, we want a definition of scalar product which is invariant under coordinate
transformations. This means that in the context of vector calculus scalar product makes sense
only between a covariant and a controvariant vector.

We note finally that most of the equations in differential geometry like (11) and (12) derive
directly from the chain rule and more in general from the rules on derivatives. Exaggerating we may
say that in a way, differential geometry is about the chain rules and its effect on equations.

1.3 Dual Vector Spaces

We want to find an efficient way to handle how covariant and controvariant vectors change under
coordinates transformations. We will do this by using two different coordinate basis, one for the
components of the covariant vectors and one for the components of the controvariant vectors.

Let V be an n-dimensional vector space. We decide that all vectors (i.e. covariant vectors) are
element of V . We find a base (any) of n vectors (e1 · ··, en) and for each vector v ∈ V we represent
the vector in an unique way as:

v =

n∑
1

viei (14)

of its n components.

Notation: We will use a down index for base vectors and an up index for a component of a vector.

Notation: We will use the Einstein Notation which is that every time we have an repeated index
(one up and one down) in an equation, the summation is implied. For example we have:

v =

n∑
1

viei = viei (15)

this will save use a lot of time writing summations.
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Now let V ∗ be a vector space. We decide that all covectors (i.e. controvariant vectors) are
element of V ∗. We choose for V ∗ a base of n covectors (e1 · ··, en) with the following requirement:

ei · ej = δji =

{
0 if i = j
1 if i 6= j

(16)

The reader should convince himself that when the base ei is given for V , this induces an unique
base ei for V ∗.

Notation: We will use an up index for base covectors and a down index for a component of a
covector.

Definition: We will call the vector space V ∗ defined above, the dual of the vector space V .

Why we want to define dual vector spaces for covectors? Well, for example we have seen before
that we want the scalar product to be invariant under coordinate transformations (i.e. to be a
proper scalar tensor) and therefore we want to make legal only scalar product between a vector and
a covector. If v is a vector and w is a covector, we have:

v ·w = viei · wjej = viwiej · ej (17)

because scalar product is commutative and associative. Given (16) we have eventually:

v ·w = viwi (18)

which means that we can apply the usual definition of scalar product to components while the
problems related to how vectors and covectors change under coordinate transformations are handled
by the way the relevant basis change. In tensor calculus, this will apply to components of tensors in
the same way and it will make our life much simpler.

There is a one to one map between vector in V and covectors in V ∗. This is why we call them
a dual spaces (V is in turn the dual of V ∗). It is like v ∈ V with components vi and v ∈ V ∗

with components vi are the same mathematical object but represented in a different way. The way
components change to go from a vector to its dual covector and viceversa will be clear later on.
However, you should know for the moment that exist two rank 2 tensors gij and gij that can be
used to convert vectors in their dual covectors and viceversa as follows:

vi = gijvj and vi = gijv
j (19)

The above operation is called lowering and rising indices. gij and gij are the dual of each other. gij
and gij are a rank 2 tensor, the former with two covariant indices, the latter with 2 controvariant
indices, a notation that you have not seen yet and that will be explained later. However, applying
the definition of the Einstein notation given above, the meaning of (19) should be clear. If not, have
a look two sections below where I explain Tensor algebra.

The tensors gij and gij are called the metric tensor. We will meet them later on and we will see
that they have a very profound meaning and great importance in differential geometry.

1.4 Definition of a Tensor

TBD

1.5 Tensor Algebra

TBD

1.6 Coordinate Basis and Transformation Lows

TBD
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1.7 Invariance of Tensor Equations

TBD
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TBD
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TBD

4 Connections and Covariant Derivatives
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TBD
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TBD
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